В те времена был ещё теплород, и флагистон кроме эфира.
Это вы гадаете.
Нормальные люди всю жизнь учатся.
https://search.mail.com/web?origin=tb_urlbar_ff&q=%D1%81%D0%BF%D0%B8%D0%BD+%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%B0&enc=UTF-8 http://maxpark.com/community/4057/content/2001530 Опыт Штерна и Герлаха.
В 1922 году физики проделали эксперимент, в котором оказалось, что атомы серебра имеют свой момент импульса. Причём проекция этого момента импульса на ось Z (см.рис) оказалась равной либо некоторой положительной величине, либо некоторой отрицательной величине, но не нулю. Это невозможно объяснить орбитальным моментом импульса электронов в атоме серебра. Потому что орбитальные моменты обязательно давали бы, в том числе, и нулевую проекцию. А здесь строго плюс и минус, и в нуле ничего. Впоследствии, в 1927 г. это было интерпретировано как доказательство существования спина у электронов.
В опыте Штерна и Герлаха (1922) путем испарения в вакуумной печи атомов серебра или другого металла с помощью тонких щелей формируется узкий атомный пучок (рис).
Этот пучок пропускается через неоднородное магнитное поле с существенным градиентом магнитной индукции. Индукция магнитного поля B в опыте велика и направлена вдоль оси Z. На пролетающие в зазоре магнита атомы вдоль направления магнитного поля действует сила Fz , обусловленная градиентом индукции неоднородного магнитного поля и зависящая от величины проекции магнитного момента атома на направление поля. Эта сила отклоняет движущийся атом в направлении оси Z , причем за время пролета магнита движущийся атом отклоняется тем больше, чем больше величина силы. При этом одни атомы отклоняются вверх, а другие вниз.
С позиций классической физики, пролетевшие через магнит атомы серебра должны были образовать сплошную широкую зеркальную полосу на стеклянной пластинке.
Если же, как предсказывает квантовая теория, имеет место пространственное квантование, и проекция магнитного момента pZM атома принимает только определенные дискретные значения, то под действием силы FZ атомный пучок должен расщепиться на дискретное число пучков, которые, оседая на стеклянной пластинке, дают серию узких дискретных зеркальных полосок из напыленных атомов. Именно этот результат наблюдался в эксперименте. С одним лишь но: не было полоски по самому центру пластинки.
Но это ещё не было открытием спина у электронов. Ну дискретный ряд моментов импульса у атомов серебра, ну и что? Однако учёные продолжали думать, почему нет полоски по центру пластины?
Пучок невозбужденных атомов серебра расщепился на два пучка, которые напылили на стеклянной пластинке две узкие зеркальные полоски, сдвинутые симметрично вверх и вниз. Измерение этих сдвигов позволило определить магнитный момент невозбужденного атома серебра. Его проекция на направление магнитного поля оказалась равной +μБ или -μБ . То есть магнитный момент невозбуждённого атома серебра оказался строго не равным нулю. Это не имело объяснения.
Однако, из химии было известно, что валентность серебра равна +1. То есть на внешней электронной оболочке находится один активный электрон. А общее число электронов в атоме нечётно.
Гипотеза о спине электрона
Это противоречие теории и опыта стало не единственным, обнаруженным в различных экспериментах. Такое же отличие наблюдалось при изучении тонкой структуры оптических спектров щелочных металлов (они, кстати, тоже одновалентны). В опытах с ферромагнетиками было обнаружено аномальное значение гиромагнитного отношения, отличающегося от ожидаемого значения в два раза.
В 1924 г. Вольфганг Паули ввёл двухкомпонентную внутреннюю степень свободы для описания эмиссионных спектров валентного электрона в щелочных металлах.
В который раз обращает на себя внимание, как западные учёные с лёгкостью придумывают новые частицы, феномены, реальности для объяснения старых. Точно так же введён и бозон Хиггса для объяснения массы. Далее будет бозон Шмиггса для объяснения бозона Хиггса.
В 1927 году Паули модифицирует недавно открытое уравнение Шрёдингера для учёта спиновой переменной. Модифицированное таким образом уравнение носит сейчас название уравнение Паули. При таком описании у электрона появляется новая спиновая часть волновой функции, которая описывается спинором — «вектором» в абстрактном двумерном спиновом пространстве.
Это позволило ему сформулировать принцип Паули, согласно которому в некоторой системе взаимодействующих частиц у каждого электрона должен быть свой собственный неповторяющийся набор квантовых чисел (все электроны в каждый момент времени находятся в разных состояниях). Поскольку физическая интерпретация спина у электрона была неясна с самого начала (и это имеет место до сих пор), в 1925 г. Ральф Крониг (ассистент известного физика Альфреда Ланде) высказал предположение о спине как результате собственного вращения электрона.
Все эти трудности квантовой теории были преодолены, когда осенью 1925 г. Дж. Уленбек и С. Гаудсмит постулировали, что электрон является носителем "собственных" механического и магнитного моментов, не связанных с движением электрона в пространстве. То есть обладает спином S = ½ ћ в единицах постоянной Дирака ћ, и спиновым магнитным моментом, равным магнетону Бора. Это предположение и было принято научным сообществом, поскольку удовлетворительно объясняло известные факты.
Эта гипотеза получила название гипотезы о спине электрона. Такое название связано с английским словом spin, которое переводится как "кружение", "верчение".
В 1928 г. П.Дирак ещё сильнее обобщил квантовую теорию на случай релятивистского движения частицы и вводит уже четырёхкомпонентную величину — биспинор.
В основе релятивистской квантовой механики лежит уравнение Дирака, записанное первоначально для релятивистского электрона. Это уравнение значительно сложнее уравнения Шредингера по своей структуре и математическому аппарату, используемому при его записи. Мы не станем обсуждать это уравнение. Скажем лишь, что из уравнения Дирака четвертое, спиновое квантовое число получается так же «естественно», как и три квантовых числа при решении уравнения Шредингера.
В квантовой механике квантовые числа для спина не совпадают с квантовыми числами для орбитального момента частиц, что приводит к неклассической трактовке спина. Кроме этого, у спина и орбитального момента частиц возникает различная связь с соответствующими магнитными дипольными моментами, сопровождающими любое вращение заряженных частиц. В частности, в формуле для спина и его магнитного момента гиромагнитное отношение не равно 1.
Концепция спина у электрона привлекается для объяснения многих явлений, таких как расположение атомов в периодической системе химических элементов, тонкая структура атомных спектров, эффект Зеемана, ферромагнетизм, а также для обоснования принципа Паули. Недавно возникшая область исследований, называемая «спинтроника», занимается манипуляциями спинов зарядов в полупроводниковых устройствах. В ядерном магнитном резонансе используется взаимодействие радиоволн со спинами ядер, позволяющее осуществлять спектроскопию химических элементов и получать изображения внутренних органов в медицинской практике. Для фотонов как частиц света спин связывается с поляризацией света.
Механическая модель спина.
В 20-30-х годах прошлого столетия было проведено множество экспериментов, которые доказали наличие спина у элементарных частиц. Эксперименты доказали реальность спина как именно момента вращения. Но откуда берётся это вращение в электроне или протоне?
Предположим простейшее, что электрон - это малюсенький твердый шарик. Предполагаем, что этот шарик имеет некую среднюю плотность и некие физические параметры, близкие к известным экспериментальным и теоретическим величинам реального электрона. Имеем экспериментальные величины:
Масса покоя электрона: me
Спин электрона Se = ½ ћ
В качестве линейного размера объекта берем его комптоновскую длину волны, подтвержденную как экспериментально, так и теоретически. Комптоновскую длина волны электрона:
Очевидно, это диаметр объекта. Радиус в 2 раза меньше:
Имеем теоретические величины, получаемые из механики и квантовой физики.
1) Вычисляем момент инерции объекта Ie. Поскольку мы не знаем достоверно его формы, то вводим поправочный коэффициенты ke , который, в зависимости от формы, теоретически может иметь величину от почти 0,0 (иголка, вращающаяся вокруг длинной оси) до 1,0 (при точной форме длинной гантельки как на рисунке в начале статьи или широкого, но тонкого бублика). К примеру, значение 0,4 достигается при точной форме шара. Итак:
2) Из формулы S = I·ω , находим угловую скорость вращения объектов:
3) Этой угловой скорости соответствует линейная скорость V "поверхности" электрона:
Или
V=0,4c;
Если брать как на рисунке в начале статьи электрон имеющим вид гантельки, то получается
V=0,16c;
4) Совершенно аналогично проделываем выкладки для протона или нейтрона. Линейная скорость "поверхности" протона или нейтрона для шариковой модели получается точно такая же, 0,4 c:
5) Делаем выводы. Результат зависит от формы объекта (коэффициент k при вычислении момента инерции) и от коэффициентов в формулах для спинов электрона или протона (½). Но, как ни крути, а в среднем получается около, близко к скорости света. Как у электрона, так и у протона. Не больше скорости света! Результат, который трудно назвать случайным. Мы делали "бессмысленные" выкладки, но получили абсолютно осмысленный, выделенный результат!
Все не так, ребята! - говорил Владимир Высоцкий. Это не сигнал, это дилемма: либо - либо! Либо что-то пополам, либо что-то вдребезги. Эйнштейн и Шрёдингер лишают смысла эти рассуждения, так как по Эйнштейну при скоростях порядка скорости света масса растет до бесконечности, а по Шрёдингеру они не имеют ни формы, ни размеров. Однако все на свете "относительно" и неизвестно, что чего и кто кого лишает смысла. Теория Гукуума имеет ответ, по которому волновые вихри – электроны, в Гукууме как раз и крутятся со световой линейной скоростью! Собственно масса - она всегда движется и всегда исключительно со световой скоростью. Электрон и протон, каждый элемент в них, каждая точка движется по своей замкнутой траектории и не иначе как со скоростью света. Именно в этом и состоит настоящий и простой смысл формулы:
Е = mC^
Это практически удвоенная формула кинетической энергии волны. Почему удвоенная? – Потому что в упругой волне половина энергии кинетическая, а вторая половина энергии – скрытая, потенциальная, в виде деформации среды, в которой происходит распространение волны.